skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tao, Lingling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Dielectrics have long been considered as unsuitable for pure electrical switches; under weak electric fields, they show extremely low conductivity, whereas under strong fields, they suffer from irreversible damage. Here, we show that flexoelectricity enables damage-free exposure of dielectrics to strong electric fields, leading to reversible switching between electrical states—insulating and conducting. Applying strain gradients with an atomic force microscope tip polarizes an ultrathin film of an archetypal dielectric SrTiO 3 via flexoelectricity, which in turn generates non-destructive, strong electrostatic fields. When the applied strain gradient exceeds a certain value, SrTiO 3 suddenly becomes highly conductive, yielding at least around a 10 8 -fold decrease in room-temperature resistivity. We explain this phenomenon, which we call the colossal flexoresistance, based on the abrupt increase in the tunneling conductance of ultrathin SrTiO 3 under strain gradients. Our work extends the scope of electrical control in solids, and inspires further exploration of dielectric responses to strong electromechanical fields. 
    more » « less
  2. Abstract Resonant tunneling is a quantum‐mechanical effect in which electron transport is controlled by the discrete energy levels within a quantum‐well (QW) structure. A ferroelectric resonant tunneling diode (RTD) exploits the switchable electric polarization state of the QW barrier to tune the device resistance. Here, the discovery of robust room‐temperature ferroelectric‐modulated resonant tunneling and negative differential resistance (NDR) behaviors in all‐perovskite‐oxide BaTiO3/SrRuO3/BaTiO3QW structures is reported. The resonant current amplitude and voltage are tunable by the switchable polarization of the BaTiO3ferroelectric with the NDR ratio modulated by ≈3 orders of magnitude and an OFF/ON resistance ratio exceeding a factor of 2 × 104. The observed NDR effect is explained an energy bandgap between Ru‐t2gand Ru‐egorbitals driven by electron–electron correlations, as follows from density functional theory calculations. This study paves the way for ferroelectric‐based quantum‐tunneling devices in future oxide electronics. 
    more » « less